Modelica.Magnetic.QuasiStatic.FundamentalWave.Components

Basic fundamental wave components

Information

Basic components of the FundamentalWave library for modeling magnetic circuits. Machine specific components are located at Machines.Components.

Extends from Modelica.Icons.Package (Icon for standard packages).

Package Content

Name Description
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Ground Ground Magnetic ground
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Reluctance Reluctance Salient reluctance
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Permeance Permeance Salient Permeance
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.EddyCurrent EddyCurrent Constant loss model under sinusoidal magnetic conditions
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.MultiPhaseElectroMagneticConverter MultiPhaseElectroMagneticConverter Multi phase electro magnetic converter
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.QuasiStaticAnalogElectroMagneticConverter QuasiStaticAnalogElectroMagneticConverter Electro magnetic converter to only (!) quasi static analog, neglecting induced voltage
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Idle Idle Idle running branch
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Short Short Short connection
Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Crossing Crossing Crossing of connections

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Ground Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Ground

Magnetic ground

Information

Grounding of the complex magnetic potential. Each magnetic circuit has to be grounded at least one point of the circuit.

Connectors

NameDescription
port_pComplex magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Reluctance Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Reluctance

Salient reluctance

Information

The salient reluctance models the relationship between the complex magnetic potential difference and the complex magnetic flux ,

  

which can also be expressed in terms complex phasors:

  

Extends from Interfaces.PartialTwoPortElementary (Elementary partial two port for textual programming).

Parameters

NameDescription
R_mMagnetic reluctance in d=re and q=im axis

Connectors

NameDescription
port_pPositive quasi static magnetic port
port_nNegative quasi static magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Permeance Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Permeance

Salient Permeance

Information

The salient permeance models the relationship between the complex magnetic potential difference V_m.png and the complex magnetic flux :

reluctance.png

Extends from Interfaces.PartialTwoPortElementary (Elementary partial two port for textual programming).

Parameters

NameDescription
G_mMagnetic permeance in d=re and q=im axis

Connectors

NameDescription
port_pPositive quasi static magnetic port
port_nNegative quasi static magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.EddyCurrent Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.EddyCurrent

Constant loss model under sinusoidal magnetic conditions

Information

The eddy current loss model with respect to fundamental wave effects is designed in accordance to FluxTubes.Basic.EddyCurrent and FundamentalWave.Components.EddyCurrent.

  .

Fig. 1: equivalent models of eddy current losses

Due to the nature of eddy current losses, which can be represented by symmetric conductors in an equivalent electric circuit (Fig. 1), the respective number of phases has to be taken into account. Assume that the conductances of the equivalent circuit are , the conductance for the eddy current loss model is determined by

  

where is the number of turns of the symmetric electro magnetic coupling.

For such an phase system the relationship between the voltage and current space phasors and the magnetic flux and magnetic potential difference phasor is

  ,
  ,

where and are the phase voltages and currents, respectively.

The dissipated loss power

  

can be determined for the space phasor relationship of the voltage and current space phasor.

See also

FluxTubes.Basic.EddyCurrent

Extends from Interfaces.PartialTwoPortElementary (Elementary partial two port for textual programming), Modelica.Thermal.HeatTransfer.Interfaces.PartialElementaryConditionalHeatPort (Partial model to include a conditional HeatPort in order to dissipate losses, used for textual modeling, i.e., for elementary models).

Parameters

NameDescription
GEquivalent symmetric loss conductance [S]
useHeatPort=true, if heatPort is enabled
TFixed device temperature if useHeatPort = false [K]

Connectors

NameDescription
port_pPositive quasi static magnetic port
port_nNegative quasi static magnetic port
heatPortOptional port to which dissipated losses are transported in form of heat

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.MultiPhaseElectroMagneticConverter Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.MultiPhaseElectroMagneticConverter

Multi phase electro magnetic converter

Information

Each phase of an phase winding has an effective number of turns, and an respective winging angle and a phase current .

The total complex magnetic potential difference of the multi phase winding is determined by:

  

In this equation is the positive symmetrical component of the currents.

The positive sequence of the voltages induced in each winding is directly proportional to the complex magnetic flux and the number of turns. This relationship can be modeled by means of

  .

See also

Modelica.Magnetic.FundamentalWave.Components.SinglePhaseElectroMagneticConverter, Modelica.Magnetic.FundamentalWave.Components.MultiPhaseElectroMagneticConverter, QuasiStaticAnalogElectroMagneticConverter

Parameters

NameDescription
mNumber of phases
effectiveTurnsEffective number of turns

Connectors

NameDescription
plug_pPositive plug
plug_nNegative plug
port_pPositive complex magnetic port
port_nNegative complex magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.QuasiStaticAnalogElectroMagneticConverter Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.QuasiStaticAnalogElectroMagneticConverter

Electro magnetic converter to only (!) quasi static analog, neglecting induced voltage

Information

The analog single phase winding has an effective number of turns, and a respective orientation of the winding, . The current in the winding is .

The total complex magnetic potential difference of the single phase winding is determined by:

  

where is the reference angle of the electrical and magnetic system, respectively. The induced voltage is identical to zero.

See also

Modelica.Magnetic.FundamentalWave.Components.SinglePhaseElectroMagneticConverter, Modelica.Magnetic.FundamentalWave.Components.MultiPhaseElectroMagneticConverter, MultiPhaseElectroMagneticConverter

Parameters

NameDescription
effectiveTurnsEffective number of turns

Connectors

NameDescription
pin_pPositive pin
pin_nNegative pin
port_pPositive complex magnetic port
port_nNegative complex magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Idle Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Idle

Idle running branch

Information

This is a simple idle running branch.

See also

Short Crossing, Magnetic.FundamentalWave.Components.Idle, Magnetic.FundamentalWave.Components.Short, Magnetic.FundamentalWave.Components.Crossing

Extends from Interfaces.PartialTwoPortElementary (Elementary partial two port for textual programming).

Connectors

NameDescription
port_pPositive quasi static magnetic port
port_nNegative quasi static magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Short Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Short

Short connection

Information

This is a simple short cut branch.

See also

Idle Crossing, Magnetic.FundamentalWave.Components.Idle, Magnetic.FundamentalWave.Components.Short, Magnetic.FundamentalWave.Components.Crossing

Extends from Interfaces.PartialTwoPort (Partial two port for graphical programming).

Connectors

NameDescription
port_pPositive quasi static magnetic port
port_nNegative quasi static magnetic port

Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Crossing Modelica.Magnetic.QuasiStatic.FundamentalWave.Components.Crossing

Crossing of connections

Information

This is a simple short cut branch.

See also

Idle Short Magnetic.FundamentalWave.Components.Idle, Magnetic.FundamentalWave.Components.Short, Magnetic.FundamentalWave.Components.Crossing

Connectors

NameDescription
port_p1Connected with port_p2
port_n1Connected with port_n2
port_p2Connected with port_p1
port_n2Connected with port_n1
Automatically generated Tue Apr 05 09:36:37 2016.