Modelica.Magnetic.FundamentalWave.Examples.BasicMachines

Examples of machines of the FundamentalWave library

Information

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL AIMC_DOL Direct on line start of asynchronous induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase AIMC_DOL_MultiPhase Direct on line start of multi phase asynchronous induction machine with squirrel cage
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start AIMS_Start Starting of asynchronous induction machine with slip rings
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase AIMS_Start_MultiPhase Starting of multi phase asynchronous induction machine with slip rings
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter SMPM_Inverter Starting of permanent magnet synchronous machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase SMPM_Inverter_MultiPhase Starting of multi phase permanent magnet synchronous machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator SMEE_Generator Electrical excited synchronous machine operating as generator
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase SMEE_Generator_MultiPhase Electrical excited multi phase synchronous machine operating as generator
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter SMR_Inverter Starting of synchronous reluctance machine with inverter
Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase SMR_Inverter_MultiPhase Starting of multi phase synchronous reluctance machine with inverter

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL

Direct on line start of asynchronous induction machine with squirrel cage

Information

Direct on line (DOL) starting of an asynchronous induction machine with squirrel cage

At start time tStart three phase voltage is supplied to the asynchronous induction machine with squirrel cage. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMC_DOL_MultiPhase

Direct on line start of multi phase asynchronous induction machine with squirrel cage

Information

Direct on line (DOL) starting of an asynchronous induction machine with squirrel cage

At start time tStart voltages are supplied to the multi phase asynchronous induction machines with squirrel cage. The machines starts from standstill, accelerating inertias against load torque quadratic dependent on speed, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
pNumber of pole pairs
aimcData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start

Starting of asynchronous induction machine with slip rings

Information

Starting of an asynchronous induction machine with slipring rotor resistance starting

At start time tOn three phase voltage is supplied to the asynchronous induction machine with sliprings. The machine starts from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
aimsData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.AIMS_Start_MultiPhase

Starting of multi phase asynchronous induction machine with slip rings

Information

Starting of an asynchronous induction machine with slipring rotor resistance starting

At start time tOn voltages are supplied to the asynchronous induction machines with sliprings. The two machine start from standstill, accelerating inertias against load torque quadratic dependent on speed, using a starting resistance. At time tRheostat external rotor resistance is shortened, finally reaching nominal speed. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
mrNumber of rotor phases
VsNominalNominal RMS voltage per phase [V]
fNominalNominal frequency [Hz]
tOnStart time of machine [s]
RStartStarting resistance [Ohm]
tRheostatTime of shortening the rheostat [s]
T_LoadNominal load torque [N.m]
w_LoadNominal load speed [rad/s]
J_LoadLoad inertia [kg.m2]
aimsData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter

Starting of permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machine to start, and accelerate the inertias.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMPM_Inverter_MultiPhase

Starting of multi phase permanent magnet synchronous machine with inverter

Information

Permanent magnet synchronous induction machine fed by an ideal inverter

An ideal frequency inverter is modeled by using VfControllers and SignalVoltagess. Frequency is raised by a ramp, causing the permanent magnet synchronous induction machines to start, and accelerate the inertias. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

At time tStep a load step is applied. Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smpmData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator

Electrical excited synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

An electrically excited synchronous generator is connected to the grid and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. This allows to see several characteristics dependent on rotor angle.

Simulate for 30 seconds and plot (versus rotorAngleM.rotorDisplacementAngle):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
wNominal speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
pNumber of pole pairs
RsWarm stator resistance per phase [Ohm]
LssigmaStator stray inductance per phase [H]
LmdMain field inductance in d-axis [H]
LmqMain field inductance in q-axis [H]
LrsigmadDamper stray inductance (equivalent three phase winding) d-axis [H]
LrsigmaqDamper stray inductance (equivalent three phase winding) q-axis [H]
RrdWarm damper resistance (equivalent three phase winding) d-axis [Ohm]
RrqWarm damper resistance (equivalent three phase winding) q-axis [Ohm]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMEE_Generator_MultiPhase

Electrical excited multi phase synchronous machine operating as generator

Information

Electrical excited synchronous induction machine as generator

Two electrically excited synchronous generators are connected to grids and driven with constant speed. Since speed is slightly smaller than synchronous speed corresponding to mains frequency, rotor angle is very slowly increased. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 30 seconds and plot (versus rotorAngleM3.rotorDisplacementAngle):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
wNominal speed [rad/s]
IeExcitation current [A]
Ie0Initial excitation current [A]
gamma0Initial rotor displacement angle [rad]
pNumber of pole pairs
RsWarm stator resistance per phase [Ohm]
LssigmaStator stray inductance per phase [H]
LmdMain field inductance in d-axis [H]
LmqMain field inductance in q-axis [H]
LrsigmadDamper stray inductance (equivalent three phase winding) d-axis [H]
LrsigmaqDamper stray inductance (equivalent three phase winding) q-axis [H]
RrdWarm damper resistance (equivalent three phase winding) d-axis [Ohm]
RrqWarm damper resistance (equivalent three phase winding) q-axis [Ohm]
smeeData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter

Starting of synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

An ideal frequency inverter is modeled by using a VfController and a three-phase SignalVoltage. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smrData 

Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase Modelica.Magnetic.FundamentalWave.Examples.BasicMachines.SMR_Inverter_MultiPhase

Starting of multi phase synchronous reluctance machine with inverter

Information

Synchronous induction machine with reluctance rotor fed by an ideal inverter

Ideal frequency inverters are modeled by using a VfController and phase SignalVoltages. Frequency is raised by a ramp, causing the reluctance machine to start, and accelerating inertias. At time tStep a load step is applied. Two equivalent machines with different numbers of phases are compared and their equal behavior is demonstrated.

Simulate for 1.5 seconds and plot (versus time):

Extends from Modelica.Icons.Example (Icon for runnable examples).

Parameters

NameDescription
mNumber of stator phases
VsNominalNominal RMS voltage per phase [V]
fsNominalNominal frequency [Hz]
fKneeKnee frequency of V/f curve [Hz]
tRampFrequency ramp [s]
T_LoadNominal load torque [N.m]
tStepTime of load torque step [s]
J_LoadLoad inertia [kg.m2]
smrData 
Automatically generated Tue Apr 05 09:36:35 2016.