Package with base classes for Annex60.Fluid.HeatExchangers
This package contains base classes that are used to construct the models in Annex60.Fluid.HeatExchangers.
Extends from Modelica.Icons.BasesPackage (Icon for packages containing base classes).
Name | Description |
---|---|
PartialEffectiveness | Partial model to implement heat exchangers based on effectiveness model |
Partial model to implement heat exchangers based on effectiveness model
Partial model to implement heat exchanger models.
Classes that extend this model need to implement heat and mass balance equations in a form like
// transferred heat Q1_flow = eps * QMax_flow; // no heat loss to ambient 0 = Q1_flow + Q2_flow; // no mass exchange mXi1_flow = zeros(Medium1.nXi); mXi2_flow = zeros(Medium2.nXi);
Thus, if medium 1 is heated in this device, then Q1_flow > 0
and QMax_flow > 0
.
Extends from Fluid.Interfaces.StaticFourPortHeatMassExchanger (Partial model transporting two fluid streams between four ports without storing mass or energy).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium1 | PartialMedium | Medium 1 in the component | |
replaceable package Medium2 | PartialMedium | Medium 2 in the component | |
Boolean | sensibleOnly1 | Set to true if sensible exchange only for medium 1 | |
Boolean | sensibleOnly2 | Set to true if sensible exchange only for medium 2 | |
Nominal condition | |||
MassFlowRate | m1_flow_nominal | Nominal mass flow rate [kg/s] | |
MassFlowRate | m2_flow_nominal | Nominal mass flow rate [kg/s] | |
PressureDifference | dp1_nominal | Pressure difference [Pa] | |
PressureDifference | dp2_nominal | Pressure difference [Pa] | |
Assumptions | |||
Boolean | allowFlowReversal1 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 1 |
Boolean | allowFlowReversal2 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 2 |
Advanced | |||
MassFlowRate | m1_flow_small | 1E-4*abs(m1_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
MassFlowRate | m2_flow_small | 1E-4*abs(m2_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Diagnostics | |||
Boolean | show_T | false | = true, if actual temperature at port is computed |
Flow resistance | |||
Medium 1 | |||
Boolean | from_dp1 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance1 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM1 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar |
Medium 2 | |||
Boolean | from_dp2 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance2 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM2 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a1 | Fluid connector a1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_b | port_b1 | Fluid connector b1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_a | port_a2 | Fluid connector a2 (positive design flow direction is from port_a2 to port_b2) |
FluidPort_b | port_b2 | Fluid connector b2 (positive design flow direction is from port_a2 to port_b2) |