Package with chiller models
This package contains components models for chillers.
Extends from Modelica.Icons.VariantsPackage (Icon for package containing variants).
Name | Description |
---|---|
Carnot_TEva | Chiller with prescribed evaporator leaving temperature and performance curve adjusted based on Carnot efficiency |
Carnot_y | Chiller with performance curve adjusted based on Carnot efficiency |
Examples | Collection of models that illustrate model use and test models |
Validation | Collection of models that validate the chiller models |
BaseClasses | Package with base classes for Annex60.Fluid.Chillers |
Chiller with prescribed evaporator leaving temperature and performance curve adjusted based on Carnot efficiency
This is a model of a chiller whose coefficient of performance COP changes with temperatures in the same way as the Carnot efficiency changes. The control input is the setpoint of the evaporator leaving temperature, which is met exactly at steady state if the chiller has sufficient capacity.
The model allows to either specify the Carnot effectivness ηCarnot,0, or a COP0 at the nominal conditions, together with the evaporator temperature Teva,0 and the condenser temperature Tcon,0, in which case the model computes the Carnot effectivness as
ηCarnot,0 = COP0 ⁄ (Teva,0 ⁄ (Tcon,0-Teva,0)).
On the Advanced
tab, a user can specify the temperatures that
will be used as the evaporator and condenser temperature.
During the simulation, the chiller COP is computed as the product
COP = ηCarnot,0 COPCarnot ηPL,
where COPCarnot is the Carnot efficiency and ηPL is a polynomial in the cooling part load ratio yPL that can be used to take into account a change in COP at part load conditions. This polynomial has the form
ηPL = a1 + a2 yPL + a3 yPL2 + ...
where the coefficients ai
are declared by the parameter a
.
On the Dynamics
tag, the model can be parametrized to compute a transient
or steady-state response.
The transient response of the model is computed using a first
order differential equation for the evaporator and condenser fluid volumes.
The chiller outlet temperatures are equal to the temperatures of these lumped volumes.
When using this component, make sure that the condenser has sufficient mass flow rate. Based on the evaporator mass flow rate, temperature difference and the efficiencies, the model computes how much heat will be added to the condenser. If the mass flow rate is too small, very high outlet temperatures can result.
The evaporator heat flow rate QEva_flow_nominal
is used to assign
the default value for the mass flow rates, which are used for the pressure drop
calculations.
It is also used to compute the part load efficiency.
Hence, make sure that QEva_flow_nominal
is set to a reasonable value.
The maximum cooling capacity is set by the parameter QEva_flow_min
,
which is by default set to negative infinity.
The coefficient of performance depends on the evaporator and condenser leaving temperature since otherwise the second law of thermodynamics may be violated.
For a similar model that can be used as a heat pump, see Annex60.Fluid.HeatPumps.Examples.Carnot_TCon.
Extends from Annex60.Fluid.Chillers.BaseClasses.PartialCarnot_T (Partial model for chiller with performance curve adjusted based on Carnot efficiency).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium1 | PartialMedium | Medium 1 in the component | |
replaceable package Medium2 | PartialMedium | Medium 2 in the component | |
HeatFlowRate | QEva_flow_min | -Modelica.Constants.inf | Maximum heat flow rate for cooling (negative) [W] |
Nominal condition | |||
MassFlowRate | m1_flow_nominal | QCon_flow_nominal/cp1_defaul... | Nominal mass flow rate [kg/s] |
MassFlowRate | m2_flow_nominal | QEva_flow_nominal/cp2_defaul... | Nominal mass flow rate [kg/s] |
HeatFlowRate | QEva_flow_nominal | Nominal cooling heat flow rate (QEva_flow_nominal < 0) [W] | |
HeatFlowRate | QCon_flow_nominal | -QEva_flow_nominal*(1 + COP_... | Nominal heating flow rate [W] |
TemperatureDifference | dTEva_nominal | -10 | Temperature difference evaporator outlet-inlet [K] |
TemperatureDifference | dTCon_nominal | 10 | Temperature difference condenser outlet-inlet [K] |
Pressure | dp1_nominal | Pressure difference over condenser [Pa] | |
Pressure | dp2_nominal | Pressure difference over evaporator [Pa] | |
Efficiency | |||
Boolean | use_eta_Carnot_nominal | true | Set to true to use Carnot effectiveness etaCarnot_nominal rather than COP_nominal |
Real | etaCarnot_nominal | COP_nominal/(TUse_nominal/(T... | Carnot effectiveness (=COP/COP_Carnot) used if use_eta_Carnot_nominal = true [1] |
Real | COP_nominal | etaCarnot_nominal*TUse_nomin... | Coefficient of performance at TEva_nominal and TCon_nominal, used if use_eta_Carnot_nominal = false [1] |
Temperature | TCon_nominal | 303.15 | Condenser temperature used to compute COP_nominal if use_eta_Carnot_nominal=false [K] |
Temperature | TEva_nominal | 278.15 | Evaporator temperature used to compute COP_nominal if use_eta_Carnot_nominal=false [K] |
Real | a[:] | {1} | Coefficients for efficiency curve (need p(a=a, yPL=1)=1) |
Assumptions | |||
Boolean | allowFlowReversal1 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 1 |
Boolean | allowFlowReversal2 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 2 |
Advanced | |||
MassFlowRate | m1_flow_small | 1E-4*abs(m1_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
MassFlowRate | m2_flow_small | 1E-4*abs(m2_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Diagnostics | |||
Boolean | show_T | false | = true, if actual temperature at port is computed |
Flow resistance | |||
Condenser | |||
Boolean | from_dp1 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance1 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM1 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar [1] |
Evaporator | |||
Boolean | from_dp2 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance2 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM2 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar [1] |
Dynamics | |||
Condenser | |||
Time | tau1 | 60 | Time constant at nominal flow rate (used if energyDynamics1 <> Modelica.Fluid.Types.Dynamics.SteadyState) [s] |
Temperature | T1_start | Medium1.T_default | Initial or guess value of set point [K] |
Evaporator | |||
Time | tau2 | 60 | Time constant at nominal flow rate (used if energyDynamics2 <> Modelica.Fluid.Types.Dynamics.SteadyState) [s] |
Temperature | T2_start | Medium2.T_default | Initial or guess value of set point [K] |
Evaporator and condenser | |||
Dynamics | energyDynamics | Modelica.Fluid.Types.Dynamic... | Type of energy balance: dynamic (3 initialization options) or steady state |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a1 | Fluid connector a1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_b | port_b1 | Fluid connector b1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_a | port_a2 | Fluid connector a2 (positive design flow direction is from port_a2 to port_b2) |
FluidPort_b | port_b2 | Fluid connector b2 (positive design flow direction is from port_a2 to port_b2) |
output RealOutput | QCon_flow | Actual heating heat flow rate added to fluid 1 [W] |
output RealOutput | P | Electric power consumed by compressor [W] |
output RealOutput | QEva_flow | Actual cooling heat flow rate removed from fluid 2 [W] |
input RealInput | TSet | Evaporator leaving water temperature [K] |
Chiller with performance curve adjusted based on Carnot efficiency
This is model of a chiller whose coefficient of performance COP changes with temperatures in the same way as the Carnot efficiency changes. The input signal y is the control signal for the compressor.
The model allows to either specify the Carnot effectivness ηCarnot,0, or a COP0 at the nominal conditions, together with the evaporator temperature Teva,0 and the condenser temperature Tcon,0, in which case the model computes the Carnot effectivness as
ηCarnot,0 = COP0 ⁄ (Teva,0 ⁄ (Tcon,0-Teva,0)).
The chiller COP is computed as the product
COP = ηCarnot,0 COPCarnot ηPL,
where COPCarnot is the Carnot efficiency and ηPL is a polynomial in the cooling part load ratio yPL that can be used to take into account a change in COP at part load conditions. This polynomial has the form
ηPL = a1 + a2 yPL + a3 yPL2 + ...
where the coefficients ai
are declared by the parameter a
.
On the Dynamics
tag, the model can be parametrized to compute a transient
or steady-state response.
The transient response of the model is computed using a first
order differential equation for the evaporator and condenser fluid volumes.
The chiller outlet temperatures are equal to the temperatures of these lumped volumes.
When using this component, make sure that the evaporator and the condenser have sufficient mass flow rate. Based on the mass flow rates, the compressor power, temperature difference and the efficiencies, the model computes how much heat will be added to the condenser and removed at the evaporator. If the mass flow rates are too small, very high temperature differences can result.
The evaporator heat flow rate QEva_flow_nominal
is used to assign
the default value for the mass flow rates, which are used for the pressure drop
calculations.
It is also used to compute the part load efficiency.
Hence, make sure that QEva_flow_nominal
is set to a reasonable value.
The maximum cooling capacity is set by the parameter QEva_flow_min
,
which is by default set to negative infinity.
The coefficient of performance depends on the evaporator and condenser leaving temperature since otherwise the second law of thermodynamics may be violated.
For a similar model that can be used as a heat pump, see Annex60.Fluid.HeatPumps.Carnot_y.
Extends from Annex60.Fluid.Chillers.BaseClasses.PartialCarnot_y (Partial chiller model with performance curve adjusted based on Carnot efficiency).
Type | Name | Default | Description |
---|---|---|---|
replaceable package Medium1 | PartialMedium | Medium 1 in the component | |
replaceable package Medium2 | PartialMedium | Medium 2 in the component | |
Nominal condition | |||
MassFlowRate | m1_flow_nominal | QCon_flow_nominal/cp1_defaul... | Nominal mass flow rate [kg/s] |
MassFlowRate | m2_flow_nominal | QEva_flow_nominal/cp2_defaul... | Nominal mass flow rate [kg/s] |
TemperatureDifference | dTEva_nominal | -10 | Temperature difference evaporator outlet-inlet [K] |
TemperatureDifference | dTCon_nominal | 10 | Temperature difference condenser outlet-inlet [K] |
Pressure | dp1_nominal | Pressure difference over condenser [Pa] | |
Pressure | dp2_nominal | Pressure difference over evaporator [Pa] | |
Power | P_nominal | Nominal compressor power (at y=1) [W] | |
Efficiency | |||
Boolean | use_eta_Carnot_nominal | true | Set to true to use Carnot effectiveness etaCarnot_nominal rather than COP_nominal |
Real | etaCarnot_nominal | COP_nominal/(TUse_nominal/(T... | Carnot effectiveness (=COP/COP_Carnot) used if use_eta_Carnot_nominal = true [1] |
Real | COP_nominal | etaCarnot_nominal*TUse_nomin... | Coefficient of performance at TEva_nominal and TCon_nominal, used if use_eta_Carnot_nominal = false [1] |
Temperature | TCon_nominal | 303.15 | Condenser temperature used to compute COP_nominal if use_eta_Carnot_nominal=false [K] |
Temperature | TEva_nominal | 278.15 | Evaporator temperature used to compute COP_nominal if use_eta_Carnot_nominal=false [K] |
Real | a[:] | {1} | Coefficients for efficiency curve (need p(a=a, yPL=1)=1) |
Assumptions | |||
Boolean | allowFlowReversal1 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 1 |
Boolean | allowFlowReversal2 | true | = false to simplify equations, assuming, but not enforcing, no flow reversal for medium 2 |
Advanced | |||
MassFlowRate | m1_flow_small | 1E-4*abs(m1_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
MassFlowRate | m2_flow_small | 1E-4*abs(m2_flow_nominal) | Small mass flow rate for regularization of zero flow [kg/s] |
Boolean | homotopyInitialization | true | = true, use homotopy method |
Diagnostics | |||
Boolean | show_T | false | = true, if actual temperature at port is computed |
Flow resistance | |||
Condenser | |||
Boolean | from_dp1 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance1 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM1 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar [1] |
Evaporator | |||
Boolean | from_dp2 | false | = true, use m_flow = f(dp) else dp = f(m_flow) |
Boolean | linearizeFlowResistance2 | false | = true, use linear relation between m_flow and dp for any flow rate |
Real | deltaM2 | 0.1 | Fraction of nominal flow rate where flow transitions to laminar [1] |
Dynamics | |||
Condenser | |||
Time | tau1 | 60 | Time constant at nominal flow rate (used if energyDynamics1 <> Modelica.Fluid.Types.Dynamics.SteadyState) [s] |
Temperature | T1_start | Medium1.T_default | Initial or guess value of set point [K] |
Evaporator | |||
Time | tau2 | 60 | Time constant at nominal flow rate (used if energyDynamics2 <> Modelica.Fluid.Types.Dynamics.SteadyState) [s] |
Temperature | T2_start | Medium2.T_default | Initial or guess value of set point [K] |
Evaporator and condenser | |||
Dynamics | energyDynamics | Modelica.Fluid.Types.Dynamic... | Type of energy balance: dynamic (3 initialization options) or steady state |
Type | Name | Description |
---|---|---|
FluidPort_a | port_a1 | Fluid connector a1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_b | port_b1 | Fluid connector b1 (positive design flow direction is from port_a1 to port_b1) |
FluidPort_a | port_a2 | Fluid connector a2 (positive design flow direction is from port_a2 to port_b2) |
FluidPort_b | port_b2 | Fluid connector b2 (positive design flow direction is from port_a2 to port_b2) |
output RealOutput | QCon_flow | Actual heating heat flow rate added to fluid 1 [W] |
output RealOutput | P | Electric power consumed by compressor [W] |
output RealOutput | QEva_flow | Actual cooling heat flow rate removed from fluid 2 [W] |
input RealInput | y | Part load ratio of compressor [1] |