IEA EBC Annex 60 EBC logo

Annex60.Fluid.Actuators.Dampers.Examples

Collection of models that illustrate model use and test models

Information

This package contains examples for the use of models that can be found in Annex60.Fluid.Actuators.Dampers.

Extends from Modelica.Icons.ExamplesPackage (Icon for packages containing runnable examples).

Package Content

Name Description
Annex60.Fluid.Actuators.Dampers.Examples.Damper Damper Damper with constant pressure difference and varying control signal
Annex60.Fluid.Actuators.Dampers.Examples.MixingBox MixingBox Mixing box with constant pressure difference and varying control signal
Annex60.Fluid.Actuators.Dampers.Examples.VAVBoxExponential VAVBoxExponential VAV box with constant pressure difference and varying control signal

Annex60.Fluid.Actuators.Dampers.Examples.Damper Annex60.Fluid.Actuators.Dampers.Examples.Damper

Damper with constant pressure difference and varying control signal

Annex60.Fluid.Actuators.Dampers.Examples.Damper

Information

Test model for the air damper. The air damper is connected to models for constant inlet and outlet pressures. The control signal of the damper is a ramp.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model Damper "Damper with constant pressure difference and varying control signal" extends Modelica.Icons.Example; package Medium = Annex60.Media.Air; Annex60.Fluid.Actuators.Dampers.Exponential res( A=1, redeclare package Medium = Medium, m_flow_nominal=1, filteredOpening=false); Modelica.Blocks.Sources.Ramp yRam( duration=0.3, offset=0, startTime=0.2, height=1); Annex60.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, nPorts=1, p(displayUnit="Pa") = 101335, T=293.15); Annex60.Fluid.Sources.Boundary_pT sin( redeclare package Medium = Medium, nPorts=1, p(displayUnit="Pa") = 101325, T=293.15); equation connect(yRam.y, res.y); connect(sou.ports[1], res.port_a); connect(sin.ports[1], res.port_b); end Damper;

Annex60.Fluid.Actuators.Dampers.Examples.MixingBox Annex60.Fluid.Actuators.Dampers.Examples.MixingBox

Mixing box with constant pressure difference and varying control signal

Annex60.Fluid.Actuators.Dampers.Examples.MixingBox

Information

Test model for the economizer mixing box. The economizer mixing box is exposed to time varying pressure boundary conditions and input signals.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model MixingBox "Mixing box with constant pressure difference and varying control signal" extends Modelica.Icons.Example; package Medium = Annex60.Media.Air "Medium in the component"; Dampers.MixingBox mixBox( AOut=0.7, AExh=1, ARec=1, mOut_flow_nominal=1, dpOut_nominal=20, mRec_flow_nominal=1, dpRec_nominal=20, mExh_flow_nominal=1, dpExh_nominal=20, redeclare package Medium = Medium) "mixing box"; Annex60.Fluid.Sources.Boundary_pT bouIn( redeclare package Medium = Medium, T=273.15 + 10, use_p_in=true, nPorts=2); Annex60.Fluid.Sources.Boundary_pT bouSup( redeclare package Medium = Medium, T=273.15 + 26, use_p_in=true, nPorts=1); Annex60.Fluid.Sources.Boundary_pT bouRet( redeclare package Medium = Medium, T=273.15 + 20, use_p_in=true, nPorts=1); Modelica.Blocks.Sources.Constant PAtm(k=101325); Modelica.Blocks.Sources.Ramp PSup( offset=101320, height=-10, startTime=0, duration=20); Modelica.Blocks.Sources.Ramp PRet( height=10, offset=101330, duration=20, startTime=20); Modelica.Blocks.Sources.Step yDam( height=1, offset=0, startTime=60); equation connect(yDam.y, mixBox.y); connect(bouIn.p_in, PAtm.y); connect(PRet.y, bouRet.p_in); connect(bouSup.p_in, PSup.y); connect(bouIn.ports[1], mixBox.port_Out); connect(bouIn.ports[2], mixBox.port_Exh); connect(bouSup.ports[1], mixBox.port_Sup); connect(bouRet.ports[1], mixBox.port_Ret); end MixingBox;

Annex60.Fluid.Actuators.Dampers.Examples.VAVBoxExponential Annex60.Fluid.Actuators.Dampers.Examples.VAVBoxExponential

VAV box with constant pressure difference and varying control signal

Annex60.Fluid.Actuators.Dampers.Examples.VAVBoxExponential

Information

Test model for the variable air volume flow box. The model has two flow legs, both are connected to models for constant inlet and outlet pressures. The top flow leg has a flow resistance and an air damper, and the bottom flow leg combines both of these resistances into one model. Both flow legs have identical mass flow rates, except at very small flow rates. The reason for this difference is that the equations are regularized for numerical reasons, and combining the two components within one component leads to a slightly different equation for the regularization.

Extends from Modelica.Icons.Example (Icon for runnable examples).

Modelica definition

model VAVBoxExponential "VAV box with constant pressure difference and varying control signal" extends Modelica.Icons.Example; package Medium = Annex60.Media.Air; Annex60.Fluid.Actuators.Dampers.Exponential dam( redeclare package Medium = Medium, A=1.8, m_flow_nominal=2); Modelica.Blocks.Sources.Step yDam( height=-1, offset=1, startTime=60); Modelica.Blocks.Sources.Ramp P( height=-10, offset=101330, startTime=0, duration=60); Annex60.Fluid.Sources.Boundary_pT sou( redeclare package Medium = Medium, T=273.15 + 20, nPorts=2, use_p_in=true); Annex60.Fluid.Sources.Boundary_pT sin( redeclare package Medium = Medium, T=273.15 + 20, nPorts=2, use_p_in=true); Modelica.Blocks.Sources.Constant PAtm(k=101325); Annex60.Fluid.Actuators.Dampers.VAVBoxExponential vav( redeclare package Medium = Medium, dp_nominal=5, A=1.8, m_flow_nominal=2); Annex60.Fluid.FixedResistances.PressureDrop res( from_dp=true, m_flow_nominal=2, redeclare package Medium = Medium, dp_nominal=5 - 0.45*2^2/1.2/1.8^2/2); equation connect(yDam.y,dam. y); connect(P.y, sou.p_in); connect(PAtm.y, sin.p_in); connect(yDam.y, vav.y); connect(res.port_b, dam.port_a); connect(sou.ports[1], res.port_a); connect(sou.ports[2], vav.port_a); connect(dam.port_b, sin.ports[1]); connect(sin.ports[2], vav.port_b); end VAVBoxExponential;

http://iea-annex60.org